100 research outputs found

    Global-Liar: Factuality of LLMs over Time and Geographic Regions

    Full text link
    The increasing reliance on AI-driven solutions, particularly Large Language Models (LLMs) like the GPT series, for information retrieval highlights the critical need for their factuality and fairness, especially amidst the rampant spread of misinformation and disinformation online. Our study evaluates the factual accuracy, stability, and biases in widely adopted GPT models, including GPT-3.5 and GPT-4, contributing to reliability and integrity of AI-mediated information dissemination. We introduce 'Global-Liar,' a dataset uniquely balanced in terms of geographic and temporal representation, facilitating a more nuanced evaluation of LLM biases. Our analysis reveals that newer iterations of GPT models do not always equate to improved performance. Notably, the GPT-4 version from March demonstrates higher factual accuracy than its subsequent June release. Furthermore, a concerning bias is observed, privileging statements from the Global North over the Global South, thus potentially exacerbating existing informational inequities. Regions such as Africa and the Middle East are at a disadvantage, with much lower factual accuracy. The performance fluctuations over time suggest that model updates may not consistently benefit all regions equally. Our study also offers insights into the impact of various LLM configuration settings, such as binary decision forcing, model re-runs and temperature, on model's factuality. Models constrained to binary (true/false) choices exhibit reduced factuality compared to those allowing an 'unclear' option. Single inference at a low temperature setting matches the reliability of majority voting across various configurations. The insights gained highlight the need for culturally diverse and geographically inclusive model training and evaluation. This approach is key to achieving global equity in technology, distributing AI benefits fairly worldwide.Comment: 24 pages, 12 figures, 9 table

    FraudDroid: Automated Ad Fraud Detection for Android Apps

    Get PDF
    Although mobile ad frauds have been widespread, state-of-the-art approaches in the literature have mainly focused on detecting the so-called static placement frauds, where only a single UI state is involved and can be identified based on static information such as the size or location of ad views. Other types of fraud exist that involve multiple UI states and are performed dynamically while users interact with the app. Such dynamic interaction frauds, although now widely spread in apps, have not yet been explored nor addressed in the literature. In this work, we investigate a wide range of mobile ad frauds to provide a comprehensive taxonomy to the research community. We then propose, FraudDroid, a novel hybrid approach to detect ad frauds in mobile Android apps. FraudDroid analyses apps dynamically to build UI state transition graphs and collects their associated runtime network traffics, which are then leveraged to check against a set of heuristic-based rules for identifying ad fraudulent behaviours. We show empirically that FraudDroid detects ad frauds with a high precision (93%) and recall (92%). Experimental results further show that FraudDroid is capable of detecting ad frauds across the spectrum of fraud types. By analysing 12,000 ad-supported Android apps, FraudDroid identified 335 cases of fraud associated with 20 ad networks that are further confirmed to be true positive results and are shared with our fellow researchers to promote advanced ad fraud detectionComment: 12 pages, 10 figure
    • …
    corecore